Giant panda genome: mapped or sequenced?

I’m with Ogden Nash who said:

I love the baby giant panda,
I’d welcome one to my veranda

This week, I learned via Keith that Chinese scientists announced the completion of the giant panda genome. An impressive achievement, given that the project was announced in March this year, but what exactly has been completed? Has the genome been sequenced – that is, there are strings of A, C, G and T covering most chromosomes, or mapped – that is, the approximate chromosomal location of most genes determined? The media seem unsure.

And so on. Here’s a Google News search with more hits.

So what has been achieved – sequencing or mapping? If the former, is it really complete (I doubt this) or draft – and if draft, what kind of quality? And where are the data? Nothing in the genome project section of NCBI as yet.

Not as many structures as you might think

In the midst of preparing a talk for next Monday. It occurred to me that perhaps we don’t see more protein structure-based prediction in bioinformatics because – there aren’t enough structures.

pdbstats

pdbstats

Sure, the PDB has grown a lot in the past 5 years or so and 53 103 structures (as of now) looks impressive. However, if you’re interested in protein-protein interaction, you want at least 2 chains: which more or less halves the dataset. If you want two different protein chains, you lose almost another 75%. Let’s specify a reasonable minimum resolution for X-ray diffraction data and there go ~ 3 000 entries. We probably don’t want multiple, similar proteins so let’s remove sequence identity at a redundancy of 90%. We’re left with about 2% of the original PDB, which might be useable for looking at interactions.

No wonder that most bioinformatics focuses on sequences and high-throughput interaction data.